DataScience&AITrends Hong Kong Summit

The Roadmap for Data-Centric AI

 

DATE
6 March 2024
LOCATION
Cordis, Hong Kong

DataScience&AITrends Hong Kong Summit

Data and AI are front and center in optimizing business decisions and driving the next wave of enterprise growth. While investment into AI is accelerating in the race to realize new capabilities and use cases, potential risks and regulations are also emerging.

As Data and AI leaders embark on the multi-year journey to realize business outcomes from AI initiatives, they are shifting to more focused and strategic approaches. Having a robust foundation in data and analytics, adequate infrastructure, and efficient governance are keys to progressing from experimentation to achieving meaningful ROI.

The inaugural DataScience&AITrends Asia Summit aims to provide a platform for data, AI, digital, and IT leaders to explore challenges and opportunities to implement data-centric AI. The Summit, which will feature a blend of insightful presentations and panel discussions, aims to solve the business problems of data and AI while exploring the latest tech stacks that accelerate the unlocking of data value.

This Summit is for all professionals involved in digital, data, cybersecurity, transformation, and IT, including:
  • Chief Data Officers

  • Chief Analytic Officers

  • Chief AI Officers

  • Chief Digital Officers

  • Chief Information Officers

  • Chief Technology Officers

  • Chief Transformation Officers

  • Chief Innovation Officers

  • Chief Customer Officers

  • Heads of AI

  • Heads of Data Science and Analytics

AGENDA

08:15
REGISTRATION
09:00
Welcome Remarks
09:10
Keynote: Transform Enterprise AI Strategy to Generate The Future

The democratization of Generative AI has ignited a fervor around AI in enterprises. Yet to progress from experimentation to durable usage with widespread business impacts necessitates a transformation in enterprise AI strategy. Charlie Dai, VP, Principal Analyst from Forrester will address the technology trends and business impact of generative AI, with strategic recommendations on how to transform enterprise AI strategy to drive real business growth.

09:40
Industry Insights: Rethinking Infrastructure Needs in a Generative AI World

Facilitating the next generation of AI requires massive computing power and cost-effective data storage. Stringent data privacy requirements also increase the needs of Edge AI. This session will explore the needs to rethink the IT infrastructure behind the data, to help CDOs unlock the potential of AI.

10:00
Panel: Can GenAI Adoption be Localized?

Generative AI has been in the spotlight. Behind its vast potential, it has been plagued with security, privacy, and accuracy concerns. This panel will explore:

  • Early enterprise use cases of GenAI: the low hanging fruits
  • Ensuring trust and reliability of GenAI
  • Localizing GenAI with proprietary first-party data
  • CAIO role change: considerations for AI solutions as AI developers vs AI users of open source and SaaS solutions

10:40
Industry Insights: How Data and AI Powers The Future of Search and CX

Business landscape and customer behavior are evolving. To further drive growth, enterprises must get ahead of the changes in habit, with data-driven experiences and touchpoints. This session will illustrate, from personalization and immersive to omnichannel and phygital, how your data and AI strategies can evolve to best generate business results.

11:00
REFRESHMENT BREAK
11:30
Industry Insights: How Synthetized Data Helps Train AI Effectively

AI training requires massive data sets. To overcome data availability, readiness, and regulatory challenges, synthetic data can be an answer. Find out how synthetic data can be more accessible andflexible, while providing better privacy and higher utility than real data.

11:50
Panel: The Data-Centric Drive of AI

To produce robust, reusable AI systems, at scale and efficiently, enterprises are shifting from a model- and code-centric approach to being data-centric. This panel will discuss:

  • Synthetizing data to trained machine learning models effectively
  • Solving data accessibility, volume, and quality challenges
  • Overcoming the complexity of producing and maintaining robust AIs
  • Producing scalable, multi-objective, and practical AI
  • Realigning IT infrastructure to enable data-centric AI

12:30
NETWORKING LUNCH
12:30
[By Invitation Only] Executive Luncheon: Operationalize AI & Analytics for Customer Engagement & Revenue Growth

Enterprises are relying on AI and analytics to enhance customer engagement and boost revenue. Yet, to realize their data and AI visions, enterprises must modernize their digital cores and bridge the gap to existing infrastructure and data architecture.

At this executive luncheon, Red Hat has invited the data expert from SAS to stage a fireside chat that illustrates the underlying business challenges of facilitating cloud-native AI, data analytics, and data management for organizations that are modernizing to run on-premise and in multicloud and hybrid cloud environments. They will share how CDOs may operationalize AI and analytics to gain real intelligence responding to evolving business and market changes. There will also be plenty of quality networking time over lunch to for peer-to-peer mutual learning.

14:00
Industry Insights: Governing Scalable Data to Facilitate AI Projects

Enterprises are training their own AI. And to do so accurately requires sufficient data size. While data volume is exploding, data complexity is multiplying. To ensure proper governance while maintaining accessibility and efficient usage in various AI projects, your data ecosystem needs a rethink. This session will explore the latest data architectures that propel your AI strategies, and the platforms that power them.

14:20
Panel: Are We De-Risking AI Sufficiently for Large Scale Implementation?

As AI production accelerates, and enterprises increasingly rely on AI for decisioning, having better governance to prevent adverse consequences is crucial. This panel will discuss:

  • Establishing a responsible and explainable AI culture and structure
  • Operationalizing AI Trust, Risk and Security Management (TRiSM)
  • Preventing AI hallucination, data drift, and model drift
  • Adopting a risk-proportional approach to realizing AI value

15:00
CLOSING REMARKS

SPONSORS

Executive Luncheon Sponsor


Venue
Cordis, Hong Kong
555 Shanghai St, Mong Kok

Delegate Inquiries

[email protected]

 

Speaking opportunities

Daniel Chan

[email protected]

Sponsorship opportunities

Jonathan Bigelow

[email protected]

 

Sponsorship opportunities

Shubha Ukil

[email protected]

 

Isabella Fung

[email protected]

$2,000.00 2021-09-10T08:30:00+08:00 In stock